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ABSTRACT

The Illumina HumanMethylation450 BeadChip is in-
creasingly utilized in epigenome-wide association
studies, however, this array-based measurement of
DNA methylation is subject to measurement vari-
ation. Appropriate data preprocessing to remove
background noise is important for detecting the
small changes that may be associated with dis-
ease. We developed a novel background correction
method, ENmix, that uses a mixture of exponential
and truncated normal distributions to flexibly model
signal intensity and uses a truncated normal distri-
bution to model background noise. Depending on
data availability, we employ three approaches to es-
timate background normal distribution parameters
using (i) internal chip negative controls, (ii) out-of-
band Infinium I probe intensities or (iii) combined
methylated and unmethylated intensities. We evalu-
ate ENmix against other available methods for both
reproducibility among duplicate samples and accu-
racy of methylation measurement among laboratory
control samples. ENmix out-performed other back-
ground correction methods for both these measures
and substantially reduced the probe-design type bias
between Infinium I and II probes. In reanalysis of ex-
isting EWAS data we show that ENmix can identify
additional CpGs, and results in smaller P-value es-
timates for previously-validated CpGs. We incorpo-
rated the method into R package ENmix, which is
freely available from Bioconductor website.

INTRODUCTION

DNA methylation is essential for human normal devel-
opment and regulation of gene expression, while aberrant
methylation has been linked with a number of human dis-
eases (1,2). The advance of DNA methylation arrays in
recent years has enabled large-scale epigenome-wide stud-
ies at single CpG site resolution. The Illumina Infinium
HumanMethylation450 BeadChip (3) is currently the most
commonly utilized array providing estimation of methyla-
tion level at about half a million individual CpG sites. The
array is based on measuring probe hybridization intensity
values of bisulfite-converted DNA to estimate the relative
abundance of methylated and unmethylated cytosines at se-
lected loci. Like gene expression microarrays, these quan-
titative measures are sensitive to variations in experimen-
tal conditions (4). In addition, the array uses probes with
two different chemistries (Infinium I and Infinium II) and
two fluorescent dyes (Cy3-green/Cy5-red) introducing fur-
ther complexity to the resulting data.

A number of data preprocessing methods have been pro-
posed to improve methylation data quality. These include
methods for background correction (5,6), dye bias correc-
tion (7), inter-array normalization (5) and probe-design bias
adjustment (8–11). Several background subtraction meth-
ods have been proposed: subtracting 5% percentile (Q5) of
the negative controls in each color channel (GenomeStu-
dio Methylation Module v1.8), subtracting the median in-
tensity value of negative control probes (lumi1: R package
lumi) or subtracting the mode of methylated probe inten-
sities (lumi2: R package lumi). These background subtrac-
tion methods can produce negative values or truncate low
intensity signals, and thus may introduce additional bias (5).
Pidsley et al. proposed background adjustment instead of
background correction: adding the offset between Infinium
I and II probe intensity values back to Infinium I probe in-
tensities (5). Triche et al. proposed background estimation
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using ‘out-of-band’ signal intensities for Infinium I probes
followed by adjustment using normal-exponential (noob)
or gamma convolution (goob) methods (6). However, both
noob and goob methods assume that signal intensities are
exponentially distributed, an assumption that may not fit
most DNA methylation array data.

Here we report that an exponential-normal mixture
distribution can closely approximate the observed distri-
butions of signal intensities. Based on this observation,
we introduce a novel model-based background correction
method, compare the performance (reproducibility and ac-
curacy) of this method to other commonly-used back-
ground subtraction methods and provide a user friendly R
package ENmix that incorporates the method.

MATERIALS AND METHODS

Illumina DNA methylation BeadChip

The Illumina Infinium HumanMethylation450 BeadChip
uses bisulfite converted DNA to estimate methylated (M)
and unmethylated (U) allele intensity at individual CpG
site. The methylation level (Beta value) is calculated as
M/(M+U+100), where 100 in the denominator is a con-
stant offset recommended by Illumina to regularize Beta
values when both methylated and unmethylated intensities
are low. Two different assay chemistries are employed to in-
crease CpG coverage. The Infinium I assay is used for 28%
(135 476) of the CpGs on array and has two bead types for
each CpG locus: one for the methylated and one for the un-
methylated alleles. Signal intensities for both alleles at a lo-
cus are scanned on the same color channel (Cy3 green for
some loci and Cy5 red for others). For a given type I bead,
the intensity data from the unused color channel has been
proposed as a means to estimate background, and termed
the ‘out-of-band’ (oob) intensity (6). The Infinium II assay
is used for 72% (350 036) of the CpGs on the array and uses
a single bead type per CpG. It utilizes two different colors
to represent the two different alleles. These are assessed via
single base extension with guanine (labeled with Cy3) for
methylated, or adenine (labeled with Cy5) for unmethylated
alleles. The HumanMethylation450K Beadchip has 850 in-
ternal control probes to monitor experimental procedures
at different steps, including 613 negative control probes to
measure background intensity and 186 non-polymorphic
control probes that can be used to monitor color channel
difference.

Evaluation data sets

The effect of different background correction methods on
reproducibility was assessed using data from 20 pairs of
duplicate samples that were part of a previously published
study of methylation in 891 infant whole blood samples
(12). As part of this study, duplicate samples were located on
separate 96 well plates that underwent independent bisulfite
conversion, hybridization and array scanning. One sample
was excluded due to poor data quality, leaving 19 duplicate
pairs (38 samples) for evaluation.

The effect of different background correction methods on
measurement accuracy was assessed using data from methy-
lation control mixture samples for this same study (12),

where purified human 100% methylated and unmethylated
DNA (Zymo Research, Irving CA) were mixed together in
different proportions to create laboratory control samples
with specific methylation levels: 0%, 5%, 10%, 20%, 40%,
50%, 60%, 80% and 100% methylated Replicates for each
methylation level (n = 10, 3, 2, 3, 3, 2, 3, 3 and 10, respec-
tively) were independently assayed on different arrays.

To avoid possible impact on evaluations, we excluded 69
075 probes, which include non-specific bind probes, com-
mon (MAF > 0.05) SNPs at CpG target regions, probes
on sex chromosomes and probes with multimodal methy-
lation distributions identified using ENmix R package. We
also excluded probes with low quality methylation values
where the number of beads was less than 3 or detection P-
value greater than 0.05.

To demonstrate the effect of ENmix background cor-
rection method on epigenome-wide association studies
(EWAS), we re-analyzed raw blood DNA methylation data
from 889 infants in relation to maternal smoking (12). We
preprocessed the data with different methods or combina-
tions of methods: raw data, Q5 background correction, EN-
mix oob background correction, ENmix and dye bias cor-
rection (ENmixD), ENmix+dye bias correction+quantile
normalization (ENmixDQ) and ENmix+dye bias correc-
tion+quantile normalization+BMIQ (ENmixDQB). We
used a robust linear regression model to test for association
between maternal smoking and infant DNA methylation
level adjusting for the following variables: cell type propor-
tion (CD8T, CD4T, NK, Bcell, Mono and Gran) estimated
using the Houseman method (13) from minfi R package,
gestational age in weeks, sex, education in two categories,
birth weight, maternal age, maternal BMI, parity, experi-
mental batch, cleft phenotype and baby birth year.

ENmix: Exponential-Normal mixture signal intensity back-
ground correction

Frequency plots of methylation beta values for CpGs on the
Illumina 450K array have a characteristic bimodal distri-
bution for many human tissues, such that the majority of
CpGs tend to be either unmethylated or highly methylated
(Supplementary Figure S1A). Frequency plots of the under-
lying probe intensity values from which these beta values
are calculated have heavy tails to the right for either methy-
lated and unmethylated intensities (Supplementary Figure
S1B and S1C). Considering only the set of hypomethylated
CpGs (e.g. raw beta < 0.5), the distribution plot of methy-
lated intensity values (M) are approximately exponentially
distributed, while the unmethylated intensity values (U) are
approximate normally distributed (Supplementary Figure
S2). The set of hypermethlated CpGs (e.g. raw beta ≥ 0.5)
show the reverse: methylated probe intensity values appear
to be normally distributed and unmethylated probe inten-
sity values appear to be exponentially distributed (Supple-
mentary Figure S2).

Based on these observed signal intensity distributions we
employed an exponential-normal mixture distribution to
model the signal intensity values. For each sample, we split
the 450K intensity data into six parts, M and U for Infinium
I probes on red channel, M and U for Infinium I probes on
green channel, M for Infinium II probes on green channel
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and U for Infinium II probes on the red channel. We sep-
arately modeled each part of the observed intensity values
as S = X + Y. Where X is the true signal, which follows a
mixture of an exponential distribution and a truncated (at
0) normal distribution, i.e. p1 exp(λ) + p2 N+(ν, τ 2), where
p1 and p2 are the proportion of data points that follow ex-
ponential or normal distribution and p1 + p2 = 1. Y is
the background intensity, which follows a truncated (at 0)
normal distribution N+(μ, σ 2). Thus, the background cor-
rected intensities can be estimated as E(X|S = s). See Sup-
plementary Methods for detailed derivation of this quan-
tity. Compared to the poor fit provided by a model using
only an exponential distribution (as in the noob method),
we find that our exponential-normal mixture model pro-
vides a good fit for methylation intensity data (Supplemen-
tary Figure S3).

The background normal distribution parameters � and
� for each color channel can be estimated based on: 1) in-
ternal negative control probes ( neg); 2) ‘out-of-band’ signal
intensities from Infinium I probes ( oob); or 3) combined M
and U intensity data ( est). Different from neg and oob,
the est will estimate background parameters separately for
Infinium I and II probes. See supplementary methods for
detailed description.

RESULTS

Performance metrics

Methylation levels at different CpG sites across the genome
of a single person can vary widely from 0% to 100%, how-
ever for any given CpG site, the methylation level in blood is
usually similar from person to person with small variation
(14). An important consequence of this is that the Pearson’s
correlation coefficient calculated on the set of ≈450K CpG
sites between two unrelated individuals may be almost as
high as that between two duplicate samples from the same
individual. For example, the average Pearson correlation co-
efficient for ≈450K beta values obtained directly from raw
intensity data for all possible pairs of unrelated individuals
was 0.9920, while the 19 duplicate pairs (same individual)
had an average Pearson’s correlation coefficient of 0.9958
(see also Supplementary Figure S4A1 for a typical dupli-
cate pair and 4B1 for an unrelated independent pair). The
≈0.4% difference in effect between identical and unrelated
samples limits the usefulness of raw beta value correlation
as a means of evaluating preprocessing methods. Instead,
we calculated mean-centered correlation: for each CpG on
the array we first calculated the mean across all samples,
and then subtracted this mean from the observed value of
the CpG in each sample before calculating the correlation
between any two arrays. Mean-centered correlations could
range from −1 (perfectly negative correlation) to 1 (per-
fectly positive correlation), with uncorrelated samples hav-
ing an expected value of 0. The averaged mean-centered
correlation for all possible pairs of unrelated samples was
−0.04, whereas for duplicate sample pairs it was 0.42 (Sup-
plementary Figure S4: A2 and B2). Thus mean-centered
correlation provides a much larger difference in effect for
evaluating preprocessing methods. As an alternative evalu-
ation measure, we also calculated the absolute difference in
beta values between duplicate samples at each CpG site on

the array, and summarize these using the average for each
duplicate pair.

Concordance between duplicates

We separately evaluated concordance between duplicates
for Infinium I and II probes. As shown in Table 1, for both
types of probes ENmix performed better than the alterna-
tive methods with higher correlation and smaller methyla-
tion difference between duplicate pairs. Furthermore, un-
like background subtraction methods that truncate inten-
sity values (up to 14% of CpGs in these evaluation samples),
an important feature of ENmix is that it smoothly adjusts
intensity values while maintaining their relative order (Sup-
plementary Figure S5). Overall, Q5 had better performance
than other background subtraction methods, and thus we
further compared ENmix oob and Q5 in each duplicate
pairs: Supplementary Figure S6 showed that ENmix oob
outperformed Q5 for the vast majority of individual dupli-
cates.

Comparisons of the three parameter estimation methods
for background normal distribution in ENmix model sug-
gest that oob performed better than neg. Although highly
correlated, estimates of background levels were higher when
based on out-of-band intensities than when based on in-
ternal negative controls, particularly on the red channel
(Supplementary Figure S7: A1 and A2). Estimates of back-
ground using combined methylated and unmethylated in-
tensities ( est) were highly correlated (r > 0.96) with out-
of-band intensities ( oob) (Supplementary Figure S7: B1
and B2). The est separately estimates background for In-
finium I and II probes, with Infinium II showing consis-
tently higher level of background on both color channel
(Supplementary Figure S7: B1 and B2).

Accuracy

Different levels of methylation were created by mixing un-
methylated and fully methylated laboratory standard sam-
ples in varying proportions (Supplementary Figure S8).
Similar to Triche et al. (6) we used these standards to eval-
uate the effect of various background correction methods
on methylation measurement accuracy. Deviation from the
expected methylation level was most pronounced at the
two extremes of fully unmethylated or fully methylated lab-
oratory standards: there was higher positive bias toward
unmethylated states and higher negative bias toward fully
methylated states (Figure 1). ENmix est and ENmix oob
produced the most reduction in bias, followed by EN-
mix neg and Q5, with lumi1 producing no reduction in bias
over that observed for unadjusted data (Figure 1 and Sup-
plementary Figure S9). Lumi2 was excluded from this anal-
ysis because the distribution of laboratory standard methy-
lated intensity value violates the underlying model assump-
tion resulting in substantial overcorrection (see Supplemen-
tary Figure S9).

Probe design bias

Reflecting differences in assay chemistries, Infinium II
probes produce a compressed distribution of methyla-
tion values that have different hypo- and hypermethylated
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Table 1. Effect of various background correction methods on methylation concordance between 19 pairs of duplicate samples was evaluated using mean-
centered correlation coefficient (larger is better) and average absolute methylation difference (smaller is better)

Infinium I Infinium II

Method R* P† MethDiff‡ P† R* P† Methdiff‡ P†

raw 0.45 ref 2.18 ref 0.39 ref 3.17 ref
q5 0.49 0.08 1.95 0.03 0.42 0.12 3.10 0.25
lumi1 0.47 0.27 2.09 0.23 0.38 0.58 3.23 0.72
lumi2 0.46 0.02 2.20 0.67 0.40 0.05 3.03 3.9×10−3

ENmix est 0.52 3.9×10−3 1.68 1.7×10−5 0.45 0.03 2.97 0.02
ENmix neg 0.50 0.04 1.85 3.5×10−3 0.43 0.08 3.04 0.09
ENmix oob 0.55 7.9×10−5 1.49 5.6×10−8 0.48 7.3×10−4 2.75 9.8×10−6

*Average mean-centered correlation coefficient for 19 duplicate-pairs.
†Based on one-sided Student’s paired T-test against raw result.
‡MethDiff: Average mean absolute methylation beta value difference (%) for 19 duplicate pairs.

Figure 1. Effect of various background correction methods on methylation accuracy. Laboratory DNA methylation standards of 0 and 100% and mixtures
of the two (intermediate values) were each measured on multiple arrays. Shown are medians of the CpG beta value deviation from expected methylation
levels. Overall average deviation from the experimental prediction was 15.0% for raw data and 14.1% for Q5; ENmix est, neg and oob had deviations of
12.3%, 13.6 and 11.6%, respectively. ENmix deviations were significantly smaller than raw, Q5 and lumi deviations (paired T-tests, P < 4 × 10−6).

modes than Infinium I probes (3,8). ENmix reduced this
discrepancy so that the beta value distribution mode loca-
tions for Infinium I and II probes were closer (Supplemen-
tary Figure S10).

Further preprocessing steps

We evaluated how ENmix performed when coupled with
additional preprocessing procedures. Based on previous
evaluation results (5,11,15) we selected two favorable meth-
ods: quantile normalization (5) for between-sample nor-
malization and the beta-mixture quantile normalization
(BMIQ) (11) method for correction of probe-design type

bias. We applied quantile normalization separately in U and
M intensity data for Infinium I and II probes. The BMIQ
method was applied to methylation beta values. As shown
in Supplementary Figure S11, combined use of ENmix and
quantile normalization improves duplicate agreement over
that of ENmix alone (paired T-test, P < 0.01) or quan-
tile normalization alone (paired T-test, P < 10−7, data not
shown). Similarly, BMIQ can be added to the combina-
tion of ENmix plus quantile normalization, to fully adjust
probe design bias without adversely affecting agreement be-
tween duplicates (Supplementary Figure S11). Supplemen-
tary Figure S12 shows the stepwise improvements that this
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series of preprocessing steps produce in typical duplicate
sample beta value distributions.

Example: improvements to EWAS results

As shown in Supplementary Table S1, ENmix alone or to-
gether with other preprocessing procedures increased the
number of significant CpGs identified: at FDR threshold
of 0.05 ENmix alone found 12 more CpGs than were found
using Q5 method. ENmix together with further preprocess-
ing steps (ENmixDQB) found 83 more CpGs. Although
we cannot assess whether the additional 83 CpGs are bi-
ologically important, we can examine the effect of ENmix
correction on the P-values of those CpGs that have been
validated in other studies of smoking. If ENmix correc-
tion improves the data, the P-values for validated CpGs
should get smaller. Using the 26 probes previously reported
by Joubert (16), we examined P-values in the Markunas raw
data, and following ENmix or ENmix combined with other
steps. Smaller P-values than those obtained with raw data
were found for 65%, 73%, 77% and 81%, respectively for
method ENmix, ENmixD, ENmixDQ, ENmixDQB. Con-
versely, the Q5 method decreased the statistical strength of
association: Only 38% of the 26 probes had smaller P-values
than obtained with raw data.

Software

We implemented the proposed methods into a R pack-
age ENmix, that is freely available on Bioconductor web
site (http://www.bioconductor.org). ENmix is fully compat-
ible with several other popular R packages including minfi
and wateRmelon, or can be incorporated into the ChAMP
pipeline (see ENmix user’s guide). We also developed and
provided the following tools in the package to facilitate
DNA methylation analysis: (i) plotCtrl to generate internal
control plots (similar to output from Genome Studio) for
data checking; (ii) multifreqpoly to quickly produce intu-
itive frequency polygon plots for data distribution inspec-
tion; (iii) QCinfo and QCfilter to extract data quality in-
formation and filter low quality samples and/or probes;
(iv) nmode.mc to identify CpGs with multimodal beta dis-
tributions (that may result from nearby SNPs––see details
in Supplementary Table S2); (v) pcrplot to perform prin-
cipal component regression analysis and generate plots to
demonstrate source of variation or to explore confounding
variables for association analysis and (vi) parallel comput-
ing wrappers for methods BMIQ (11) and ComBat (17).

DISCUSSION

Complex diseases can be associated with very small differ-
ences in DNA methylation profiles (14,18). Measurement of
those profiles using Infinium HumanMethylation450 Bead-
Chips can be affected by many experimental factors (8),
which can be mitigated in part by careful data preprocess-
ing. Background correction is the appropriate initial step
in the preprocessing pipeline. But existing background cor-
rection methods have known practical or theoretical lim-
itations, in part because the complex distribution of sig-
nal intensities is difficult to accurately model. We proposed

a novel background correction method ENmix to model
the methylation signal intensity with a flexible exponential-
normal mixture distribution, together with a truncated nor-
mal distribution to model background noise. Evaluation re-
sults in both duplicates and experimental standard samples
showed that ENmix outperformed commonly used back-
ground subtraction methods in terms of improvement in
replicability and accuracy as well as reducing probe design
bias. In reanalysis of previously published EWAS data, EN-
mix detected more CpGs and resulted in smaller P-values
for a set of previously-validated CpGs than were obtained
using raw data or Q5 background correction. ENmix is
an extension of two existing model-based background cor-
rection methods: robust multi-array-average (RMA) (19)
and noob (6). Like these methods ENmix assumes back-
ground intensities that are normally distributed. However,
RMA and noob assume signal intensities are exponentially
distributed––we demonstrate that this distribution provides
poor fit to observed methylation data. In contrast, the
exponential-normal distribution used by ENmix provides
good fit. Furthermore, the RMA method is specifically de-
signed for gene expression data and the background param-
eter estimates are problematic for some methylation data
(6).

We provided three different approaches to estimate nor-
mal background distribution parameters. Similar to Triche
et al. (6), we found that out-of-band intensity performed
better than internal negative controls––perhaps reflecting
improved estimates from the large set of out-of-band val-
ues versus the relatively small set of negative controls. Back-
ground estimates using the third approach in combined U
and M intensities (in ENmix est) was highly correlated with
out-of-band estimates (ENmix oob) and had similar per-
formance. In addition ENmix est provides separate back-
ground estimates of Infinium I and II probes, which bet-
ter reduced beta value distribution differences between In-
finium I and II probes. This reduction may reflect the higher
Infinium II background––if unadjusted this higher back-
ground inflates both M and U intensities resulting in a com-
pressed beta value distribution for Infinium II probes (5).
We note in particular that ENmix est has application for the
analysis of publically available methylation data sets where
background intensity data are not available.

After ENmix background correction the resulting data
can be used with other commonly-used preprocessing meth-
ods including quantile normalization for between-sample
normalization and BMIQ for further correction of probe-
design bias. Together these result in stepwise complemen-
tary effects to improve data quality. We incorporated this
series of preprocessing methods, along with data quality-
check functions and visualization tools into ENmix, a
multiprocessor-capable R package that facilitates large-
scale analysis of methylation data.
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